Robotics Swarm Intelligence

Swarm robotics is an approach to the coordination of multiple robots as a system which consist of large numbers of mostly simple physical robots. It is supposed that a desired collective behavior emerges from the interactions between the robots and interactions of robots with the environment. This approach emerged on the field of artificial swarm intelligence, as well as the biological studies of insects, ants and other fields in nature, where swarm behavior occurs.From exploring asteroids, to building homes on the Moon, to running hotel sand potentially performing surgery someday, autonomous robots of all stripes are now being developed for many situations that might have once required human endeavor.

Miniaturization and cost are key factors in swarm robotics. These are the constraints in building large groups of robots; therefore the simplicity of the individual team member should be emphasized. This should motivate a swarm-intelligent approach to achieve meaningful behavior at swarm-level, instead of the individual level.
Much research has been directed at this goal of simplicity at the individual robot level. Being able to use actual hardware in research of Swarm Robotics rather than simulations allows researchers to encounter and resolve many more issues and broaden the scope of Swarm Research. Thus, development of simple robots for Swarm intelligence research is a very important aspect of the field. The goals include keeping the cost of individual robots low to allow scalability, making each member of the swarm less demanding of resources and more power/energy efficient.

The research of swarm robotics is to study the design of robots, their physical body and their controlling behaviors. It is inspired but not limited by the emergent behavior observed in social insects, called swarm intelligence. Relatively simple individual rules can produce a large set of complex swarm behaviors. A key-component is the communication between the members of the group that build a system of constant feedback. The swarm behavior involves constant change of individuals in cooperation with others, as well as the behavior of the whole group.

Unlike distributed robotic systems in general, swarm robotics emphasizes a large number of robots, and promotes scalability, for instance by using only local communication.That local communication for example can be achieved by wireless transmission systems, like radio frequency or infrared.

For one thing, good old-fashioned, labor-intensive farming seems like one of those last bastions of human usefulness — though traditional farms have admittedly gone through enormous changes in the last century, thanks to mechanization and the introduction of chemicals.

But the next agricultural revolution may very well be a robotic one. As many industry observers are pointing out, “precision farming” robots might be the future answer to a growing labor shortage, and to shore up declining production and efficiency — much of it brought about by lack of arable land, environmental degradation, climate change, water shortages, crop diseases and bee colony collapse disorder.